Investigation on the use of a hybrid CFD solver to simulate breaking waves

Pietro Danilo Tomaselli

Ph.d. student
Section for Fluid Mechanics, Coastal and Maritime Engineering
Department of Mechanical Engineering
Technical University of Denmark

20th January 2015
Outline

Introduction

Model set-up

Description of the model

Case studies

Conclusions
Introduction
Offshore wind farms in the future

- Multi-use platform (wind farms, aquaculture and exploitation of wave energy)
- Massive development in the intermediate depth region (20 - 60 m)

EU Project 'MERMAID - Innovative Multi-purpose offshore platforms: planning, design and operation'.
Spilling breaking waves impact on secondary structures

- Waves often break as spilling breakers in the intermediate depth area under storm conditions.
- Spilling waves are characterized by a mixture of dispersed air bubbles and water traveling with the wave front.
- Impact on secondary structures (external access platforms, boat-landings, railings..) can cause severe damages.

![Spilling and plunging waves](image)

![Breaking waves impact at a Horns Rev wind turbine](image)
Model set-up
Which are the characteristics of the problem?

- A breaking wave is an unsteady multiphase flow
- Wide range of interfacial lengths scales occurring between air and water
- Largest scales are localized at the free surface during the wave propagation
- Smallest scales are generated as soon as the wave breaks and the air bubbles are entrained
Which approach to model the different length scales?

- Wave propagation: a moving sharp interface larger than the grid size \(\rightarrow\) **Model with interface capturing capabilities for immiscible phases** (Volume Of Fluid is the most common)

- Breaking event: disruption of the sharp interface and entrainment of air bubbles smaller than the grid size \(\rightarrow\) **Eulerian multi-fluid methodology for dispersed phases**
What does hybrid model mean?

- **Hybrid** means that a solver with interface capturing capabilities is coupled with one based on the Eulerian methodology.

- Explicit coupling: both solvers are implemented, but employed in a mutually-exclusive way according to a local criterion.

- **Adopted coupling**: numerical interface sharpening within the Eulerian framework.
Interaction of: water, air above the free surface and entrained bubbles.

- Entrained bubbles with different size $\rightarrow n$ different air phases $\rightarrow n$ different diameters smaller than the grid size

- The phase representing the air above the free surface has diameter larger than the grid size (continuous air)

- Total number of phases = $(n + 1)$ air phases + 1 water phase = $n + 2$

- The interface between continuous air and water is the free surface to be sharpened

- Mass and momentum transfers among phases are not solved but modeled
Can a VOF-based model simulate the air entrainment process?

- A VOF-based model can reproduce the air entrainment process as long as the domain is discretized very finely → computational demanding!

- Two examples:

 Vortical structures underneath a plunging breaking wave. **Grid size = 0.1 mm.**

 Hydraulic jump. **Grid size = 0.625 mm**
Description of the model
The Eulerian approach: governing equations

- Averaged mass and momentum conservation equations:

\[
\frac{\partial (\alpha_i \rho_i)}{\partial t} + \nabla \cdot (\alpha_i \rho_i \mathbf{u}_i) = S_i
\]

\[
\frac{\partial (\alpha_i \rho_i \mathbf{u}_i)}{\partial t} + \nabla \cdot (\alpha_i \rho_i \mathbf{u}_i \otimes \mathbf{u}_i) = -\alpha_i \nabla p - \nabla \cdot (\alpha_i \rho_i \mathbf{T}_i^{\text{eff}}) + \alpha_i \rho_i \mathbf{g} + \mathbf{M}_i
\]

- Each phase \(i \) is essentially defined via the density, the viscosity and the diameter of bubbles

- The \((n + 1)\) air phases share the same density and viscosity but they have different diameter

- \(S_i \) and \(\mathbf{M}_i \) represent mass transfer and interfacial forces among phases respectively
Mass transfer modeling

- Mass transfer among the n bubble classes: binary breakage (regulated by the intensity of turbulence).

 $$S_{i, \text{breakup}} = \beta_i^+ - \beta_i^-$$

- Mass transfer between the dispersed bubbles and the continuous air
 - from continuous air into the n classes → air entrainment (not modeled yet)
 - from the n classes into continuous air → escaping of bubbles

- Escaping of bubbles modeled with:
 $$S_{i, \text{merging}} = (1 - \varphi_s) \varphi_{\text{morph}} \rho_i \alpha_i / (a_t \Delta t)$$

- For all phases:

 $$S_{i, \text{bubble}} = S_{i, \text{breakup}} - S_{i, \text{merging}}$$

 $$S_{\text{continuous Air}} = \sum_{i=1}^{n} S_{i, \text{merging}}$$

 $$S_{\text{water}} = 0$$
Interfacial forces modeling

- \(\mathbf{M}_i \) decomposed into three contributions: drag, virtual mass and surface tension force

- **Drag force:**
 \[
 \mathbf{M}_{D,i} = \frac{3}{4} \rho_c \alpha_c \alpha_d C_D \| \mathbf{u}_d - \mathbf{u}_c \| (\mathbf{u}_d - \mathbf{u}_c) \frac{d}{d_d}
 \]

- **Virtual mass force:**
 \[
 \mathbf{M}_{VM,i} = \rho_c \alpha_c \alpha_d C_{VM} \left(\frac{D \mathbf{u}_c}{Dt} - \frac{D \mathbf{u}_d}{Dt} \right)
 \]

- **Surface tension force:**
 \[
 \mathbf{M}_{surf,i} = \sigma \kappa \nabla \alpha
 \]

- Interfacial forces defined between:
 - water and bubble classes
 - water and continuous air
Interface sharpening method

- The interface compression method (VOF-type) is employed:

\[
\frac{\partial (\alpha_i \rho_i)}{\partial t} + \nabla \cdot (\alpha_i \rho_i \mathbf{u}_i) + \nabla \cdot [\mathbf{u}_c \alpha_i (1 - \alpha_i)] = S_i
\]

- \(\mathbf{u}_c\) is the "compression velocity":

\[
\mathbf{u}_c = \min(C \| \mathbf{u}_r \|, \max(\| \mathbf{u}_r \|)) \frac{\nabla \alpha}{\| \nabla \alpha \|}
\]

- \(C\) is a coefficient that the user can flexibly specify for any phase pair:
 - \(C = 0\) → interface not compressed, phases dispersed (bubbles and water)
 - \(C > 0\) → interface compressed, phases segregated (continuous air and water)
A bubble column: simulation set-up

- Uniform 3D hexahedral mesh of size 0.01 m
- LES Smagorinsky model employed
- Flow simulated for 200 s
- Three cases:

- **A**
 - continuousAir
 - $d = 0.004$ m
 - free surface
 - water $d = 0.0001$ m

- **B**
 - continuousAir
 - $d = 0.04$ m
 - free surface sharpened
 - water $d = 0.0001$ m

- **C**
 - continuousAir
 - $d = 0.04$ m
 - free surface sharpened
 - water $d = 0.0001$ m
 - bubble class 2
 - $d = 0.002$ m

- bubble class 1
 - $d = 0.004$ m
Isosurfaces of α_{air} at $t = 200$ s

- Negligible effect of VM
- Lift force not modeled \rightarrow Absence of transversal spreading \rightarrow Large central peak
A bubble column: results case B

Isosurfaces of α_{air} at $t = 200$ s

$\alpha_{\text{continuousAir}}$ at $t = 200$ s

- No presence of introduced bubbles above the free surface
- Free surface quite sharp with either $C=0$ or $C=1$
- Velocity profiles similar to case A

A bubble column: results case C

- Turbulence was not intense enough to break the introduced bubbles
- Time history of the axial liquid velocity:

![Graph showing time history of axial liquid velocity](image)

- Smaller bubbles were not produced → results identical to case B
A plunging solitary wave

- 3D uniform mesh in the flat part (size 0.01 m). Aspect ratio, skewness and non-orthogonality minimized in the sloping part.

- LES Smagorinsky model employed

- Wave generated by imposing velocity and phase fraction on both water and air at the inlet

- Flow simulated for 20 s

- **Air entrainment not modeled → no bubble classes → only water and continuous air**

![Diagram of the experiment with sections and distances](attachment://diagram.png)
A plunging solitary wave: $C = 0$ vs $C = 1$

- Two cases: $C = 0$ and $C = 1$
- Drag and surface tension force taken into account. No virtual mass force.
- Water phase fraction at the simulated breaking point ($x = 5.35$ m)

Upper: $C=0$. Lower: $C = 1$
A plunging wave: free surface elevation when $C = 1$

- Good agreement with experiments
- Good agreement with VOF-type model
- Run-up underestimated

![Graph showing free surface elevation with different sections and time]
Conclusions
Main conclusions and on-going work

- A CFD simulation of the entire breaking wave process involves interfacial length scales both smaller and larger than the grid size.

- An Eulerian model coupled with a VOF-type interface capturing algorithm could have the capabilities of handling such multi-scale problem.

- A bubble column case study was used to test the momentum transfer modeling and the implemented mass transfer formulations. Both need further investigations.

- Simulation of a plunging solitary wave showed encouraging results for the free surface motion. The interface sharpening method was effective at the breaking point.

On-going work:
- modeling of the lift force and the bubble coalescence
- implementation of the sub-grid air entrainment formulation